1	This question	is about the	auilibrium	reaction	between	hydrogen	and carb	on dioxide.
	TITIS QUESTION	i is about the v	.quiiibiiuiii	rcaction	DCCVVCCII	rryarogerr	aria cark	on aloxide.

$$H_2(g) + CO_2(g) \rightleftharpoons H_2O(g) + CO(g)$$
 $\Delta H^{\oplus} = +40 \text{ kJ mol}^{-1}$

What effect would the following changes have on the rate of reaction and the yield of carbon monoxide?

(a) **Increase** in temperature.

(1)

		Rate	Yield of CO
×	A	increase	increase
×	В	increase	decrease
×	C	increase	no change
X	D	no change	decrease

(b) **Increase** in pressure.

(1)

		Rate	Yield of CO
X	Α	increase	increase
X	В	increase	decrease
X	C	increase	no change
X	D	no change	no change

(Total for Question = 2 marks)

2 Carbon monoxide and chlorine react together and reach equilibrium:											
		$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$									
	If the pressure of the system is then increased at constant temperature, whice following statements is correct?										
	⊠ A	The equilibrium	ases.	es.							
	⊠ B	The equilibrium	moves to the r	ight and K_p incre	eases.						
	⊠ C	The equilibrium	moves to the r	ight, then back t	to the le	eft and K_p rem	ains the same.				
	⊠ D	The equilibrium	moves to the r	ight and K_p rema	ins the	same.					
					(Tot	al for Questic	on = 1 mark)				
3		ndicator methyl q). The equation	-	ion is shown be	low.	esented by th	e formula				
		HA(aq)	\rightleftharpoons	A⁻(aq)	+	H ⁺ (aq)					
	Colou	ur: Red		Yellow							
		er certain condition of a small vo d	•			•					
■ A change from yellow to red.											
■ B change from yellow to orange.											
	⊠ C	change from y	ellow to orange	e and then to rec	d.						
	⊠ D	not change.	<u>.</u>								
					(To	otal for Quest	ion = 1 mark)				

ŀ	The fo	llowing system was allowed to reach equilibrium at 300 °C.	
		2HI(g) \rightleftharpoons H ₂ (g) + I ₂ (g) Δ H = -53.0 kJ mol ⁻¹ Colourless Colourless Purple	
	(a) W	nat would you see if the equilibrium mixture was cooled to 250 °C?	(1)
	⊠ A	No visible change.	(1)
	⊠ B	The colour gets lighter.	
	⊠ C	The mixture turns colourless.	
	⊠ D	The mixture goes a darker purple.	
		e equilibrium mixture at 300 °C was compressed in a gas syringe to occupy a naller volume. What would be seen immediately?	(1)
	⊠ A	No visible change.	(-)
	⊠ B	The colour gets lighter.	
	⊠ C	The mixture turns colourless.	
	⊠ D	The mixture goes a darker purple.	
		(Total for Question = 2 mark	ks)
		on of iodine in aqueous potassium iodide is brown. The following equilibrium this solution.	
		this solution.	
V	exists ir	this solution. $I_2(aq) + H_2O(l) \rightleftharpoons IO^-(aq) + I^-(aq) + 2H^+(aq)$	
V S	exists ir What w	this solution. $I_2(aq) + H_2O(I) \rightleftharpoons IO^-(aq) + I^-(aq) + 2H^+(aq)$ Brown Colourless ould be the effect, if any, on the colour of the solution if five drops of dilute	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	What woodium	this solution. $I_2(aq) + H_2O(l) \rightleftharpoons IO^-(aq) + I^-(aq) + 2H^+(aq)$ Brown Colourless ould be the effect, if any, on the colour of the solution if five drops of dilute hydroxide solution were added to 5 cm ³ of the iodine solution?	

(Total for Question = 1 mark)

 $\ \square$ **D** The mixture goes a darker colour.

5

6 Methane hydrate is found on continental shelves deep in oceans. It forms methane in an endothermic equilibrium reaction, which may be represented as						
		$CH_4.6H_2O(s) \rightleftharpoons CH_4(g) + 6H_2O(l)$				
		nich of the following changes would increase the equilibrium yield of ethane?	(1)			
	⊠ A	Increasing the temperature and decreasing the pressure.	(1)			
	⊠ B	Decreasing both the temperature and the pressure.				
	⊠ C	Increasing both the temperature and the pressure.				
	⊠ D	Decreasing the temperature and increasing the pressure.				
		nich of the following would decrease the value of the equilibrium constant, K_{p} , the above equilibrium?	(1)			
	⊠ A	Decreasing the pressure				
	ВВ	Increasing the pressure				
	⊠ C	Decreasing the temperature				
	⊠ D	Increasing the temperature				

(Total for Question = 2 marks)

in a	an e	ndothermic equilibrium reaction, which may be represented as	
		$CH_4.6H_2O(s) \rightleftharpoons CH_4(g) + 6H_2O(l)$	
(a)		nich of the following changes would decrease the equilibrium yield of ethane?	(1)
×	A	Decreasing the temperature and decreasing the pressure.	
×	В	Increasing the temperature and decreasing the pressure.	
×	C	Decreasing the temperature and increasing the pressure.	
×	D	Increasing the temperature and increasing the pressure.	
(b)		nich of the following would increase the value of the equilibrium constant, K_{p} , the above equilibrium?	(1)
X	Α	Decreasing the pressure	(1)
X	В	Increasing the pressure	
×	C	Decreasing the temperature	
X	D	Increasing the temperature	
		(Total for Question = 2 mark	(s)

7 Methane hydrate is found on continental shelves deep in oceans. It forms methane

8 Which	of the following cannot alter the position of a chemical equilibrium?
	Increasing the amount of catalyst
⊠ B	Increasing the reactant concentration
⊠ C	Increasing the temperature
⊠ D	Increasing the total pressure
	(Total for Question = 1 mark
9 CO(g)+ 2	$H_2(g) \implies CH_3OH(g) \Delta H = -91 \text{ kJ mo}^{-1}$
The cor	nditions which would produce the greatest yield of methanol are
⊠ A	high pressure and high temperature.
⊠ B	high pressure and low temperature.
⊠ C	low pressure and low temperature.
■ D	low pressure and high temperature.
	(Total for Question = 1 mark)

10	(a	a) F	or the equilibrium reaction between hydrogen and iodine	
			$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	
		ind	reasing the pressure of the system	(1)
	×	A	has no effect on the rate or the position of equilibrium.	
	×	В	increases the rate but does not affect the position of equilibrium.	
	×	C	increases the rate and shifts the equilibrium to the right.	
	X	D	increases the rate and shifts the equilibrium to the left.	
	(b)		e equation for the equilibrium reaction between hydrogen and iodine may also written as	
			$\frac{1}{2}H_{2}(g) + \frac{1}{2}I_{2}(g) \rightleftharpoons HI(g)$	
		Th	is change to the equation, compared to that in part (a),	(1)
	×	Α	has no effect on the value of the equilibrium constant.	. /
	X	В	halves the value of the equilibrium constant.	

Square roots the value of the equilibrium constant.

(Total for Question = 2 marks)

11	Tł	ne f	irst stage in the manufacture of nitric acid is the oxidation of ammonia:	
			$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g) \Delta H = -906 \text{ kJ mol}^{-1}$	
	(a)		modern industrial plants this reaction is carried out at a pressure of around tm. Which of the following statements is incorrect ? The raised pressure	(1)
	×	A	helps push the reactants through the reactor.	
	X	В	shifts the position of equilibrium to the right.	
	X	C	increases the cost of the reactor.	
	X	D	increases the energy cost of this part of the process.	
	(b)		platinum-rhodium alloy catalyst is used in this reaction. Which of the following tements is incorrect ? The catalyst	(1)
	×	Α	lowers the activation energy of the reaction.	
	×	В	has no effect on the equilibrium constant for the reaction.	
	X	C	alters the enthalpy change of the reaction.	
	×	D	reduces the energy cost of this part of the process.	
	(c)		e operating temperature of this reaction is about 900°C. The use of a high mperature	(1)
	X	Α	increases the rate of the reaction and the equilibrium yield.	
	×	В	increases the rate of the reaction and decreases the equilibrium yield.	
	×	C	decreases the rate of the reaction and the equilibrium yield.	
	×	D	decreases the rate of the reaction and increases the equilibrium yield.	
			(Total for Question = 3 mark	(s)

12	An	in	important step in the production of sulfuric acid is the oxidatio $2SO_2(g) \ + \ O_2(g) \ \rightleftharpoons \ 2SO_3(g) \ \Delta H \ = \ -196 \ kJ \ r$	
	/hic O₃?	h d	h of the conditions below is best suited to produce a high yield	of sulfur trioxide,
×	Α		1 atm pressure and 800 °C.	
×	В		2 atm pressure and 800 °C.	
X	C		1 atm pressure and 400 °C.	
X	D)	2 atm pressure and 400 °C.	
			(Total for C	Question = 1 mark)
13	W	hic	hich of these will not improve the overall yield of the Haber prod	cess?
			$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ ΔH 92 kJ mol	-1
	×	A	A Increasing the pressure.	
	×	В	B Liquefying then removing the ammonia from the reaction.	
	×	C	C Increasing the temperature.	
	×	D	D Recycling unreacted nitrogen and hydrogen.	
			(Total for	Question 1 mark)
14	1,2-	dio	dichloroethane decomposes in the presence of a catalyst.	
		C	$CH_2ClCH_2Cl(g) \rightleftharpoons CH_2 = CHCl(g) + HCl(g)$ $\Delta H = +5$	51 kJ mol ⁻¹
			ch of the following would result in an increase in the equilibrium roethene?	yield of
[A	\	Increasing the temperature.	
[× B	3	Increasing the pressure.	
[× (2	Increasing the surface area of the catalyst.	
[X D)	Changing the catalyst to a more efficient one.	
			(Total for Q	uestion = 1 mark)

15	In the	equilibrium	below.	what	effect	would	the	changes	described	have	on the	e system?	
		1	,					\mathcal{C}				_	

$$2H_2S(g) + SO_2(g) \rightleftharpoons 3S(s) + 2H_2O(g)$$

 ΔH is negative

(a) Increase in temperature

(1)

- **B** increase rate, increase yield
- C decrease rate, decrease yield
- **D** decrease rate, increase yield
- (b) Decrease in pressure

(1)

- **B** increase rate, increase yield
- C decrease rate, decrease yield
- \square **D** decrease rate, increase yield

(Total for Question = 2 marks)

16		nitrogen dioxide, NO_2 , exists in equilibrium with colourless gen tetroxide, N_2O_4 .	
		$2NO_2(g) \rightleftharpoons N_2O_4(g) \Delta H \qquad 57.2 \text{ kJ mol}^{-1}$ brown colourless	
		pressure is increased. When equilibrium is restored, the appearance of the ture of gases will be	(1)
	\mathbf{A}	colourless.	(1)
	B	unchanged.	
		paler brown.	
	D	darker brown.	
		temperature is increased. When equilibrium is restored, the appearance of the ture of gases will be	(1)
	\square A	colourless.	(1)
	\boxtimes B	unchanged.	
		paler brown.	
	\square D	darker brown.	
		(Total for Question 2 marks	i)

17 The graph below shows the yield of product in a gaseous equilibrium at different temperatures and pressures.

Temperature/°C

The forward reaction in the equilibrium is

- exothermic, and the number of moles of gas is increasing. \mathbf{X} A
- \boxtimes B endothermic, and the number of moles of gas is increasing.
- exothermic, and the number of moles of gas is decreasing. \mathbf{C}
- \times D endothermic, and the number of moles of gas is decreasing.

(Total for Question 1 mark)